eLINE Ball Rail Systems

R310EN 2211 (2006.04)

Linear Motion and Assembly Technologies

Ball Rail Systems
Roller Rail Systems
Linear Bushings and Shafts
Ball Screw Drives
Linear Motion Systems
Basic Mechanical Elements
Manual Production Systems
Transfer Systems

www.boschrexroth.com/brl

eLINE Ball Rail Systems

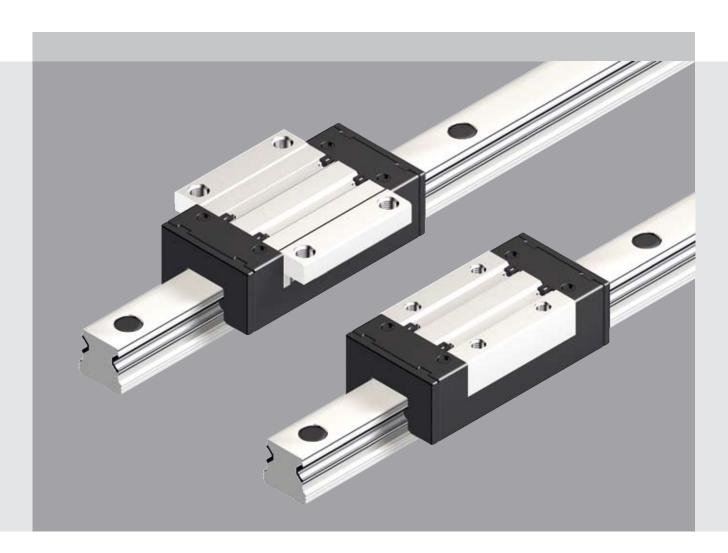
Product Overview	4
Technical Data, Design Notes, Mounting Instructions	6
General Technical Data and Calculations	6
Selection of Accuracy Classes	9
Combination of Accuracy Classes	10
Selection of System Preload	10
General Mounting Instructions	11
eLINE Runner Blocks	12
FNS R2031 flanged, normal, standard height	12
SNS R2032 slimline, normal, standard height	14
eLINE Guide Rails	16
For mounting from above R2035	16
For mounting from below R2037	18
Accessories	20
Lube unit with sealing function DSE	20
Funnel-type lube nipple	21
Hydraulic-type lube nipple	21
Seal unit DE	22

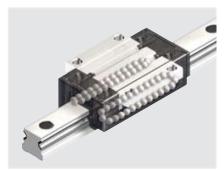
Product Overview

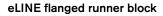
Product background

Profiled rail systems have firmly established themselves as standard linear motion solutions. They were developed for precision applications calling for high accuracy and rigidity of guidance, e.g. in machine tools. In the meantime, a great variety of other applications for rail systems have emerged where high rigidity and accuracy are frequently not the most important considerations.

Rexroth's eLINE range of ball rail systems was developed for applications of this kind, especially for light machinery and for handling and positioning movements where the main emphasis is on economy and durability.


Made of wrought aluminum alloy with ball tracks of hardened antifriction bearing steel, the runner blocks and guide rails are characterized by their low weight. compact design, and equal load bearing capacity in all four main directions of loading.


Application areas:


Light machinery, handling technology, jigs and fixtures, assembly technology, positioning units, manual displacement systems, machine enclosures, door and window construction, building services technology, trade show and shop construction, woodworking machinery, DIY equipment, and many more.

Special features of the new eLINE Ball Rail Systems:

- Available in the three most common sizes to DIN 645-1
- Structural design allows for much greater parallelism and height offsets of the mounting bases
- Can be mounted even on unmachined mounting surfaces, depending on the application
- Especially compact, lightweight design; 60% weight saving versus steel versions
- Much higher corrosion resistance than steel versions
- Two rows of especially large-diameter balls make this guide less sensitive to dirt while offering higher torsional stiffness
- Runner blocks initially greased in-factory, therefore provided with long-term lubrication
- Available in two accuracy classes and two preload classes
- Ball retainers in the runner blocks allow them to be removed from the rail without any loss of balls
- All eLINE runner blocks are delivered with ready-mounted seal units
- Optional lube units can be mounted at each end to prolong lubrication intervals still further, often reaching lube-for-life, and provide end sealing action
- Guide rails with reference edge on both sides
- All accuracy classes can be combined with one anotherr
- Interchangeability allows individual stocking of runner blocks and guide rails top logistics unequalled anywhere in the world
- Same connection dimensions as steel ball rail systems

eLINE slimline runner block

Lube unit with sealing function for eLINE Ball Rail Systems (accessories)

For additional information on the Ball Rail Systems range, see main catalog "Rexroth Ball Rail Systems".

Technical Data, Design Notes, Mounting Instructions

General Technical Data and Calculations

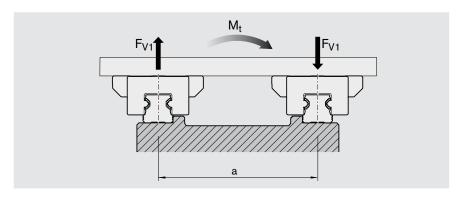
Speed

$$v_{max} = 2 \text{ m/s}$$

Acceleration

$$a_{max} = 30 \text{ m/s}^2$$

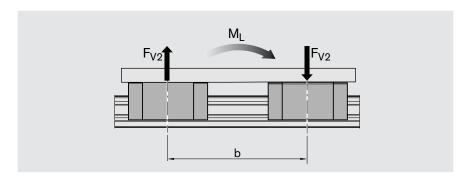
Temperature resistance


$$t = 0 - 60 \, ^{\circ}C$$

Sealing

All eLINE runner blocks are delivered with ready-mounted seal units

Information on moment load calculation


Conversion of a torsional moment acting on a table

$$F_{V1} = \frac{M_t}{a}$$

F_{V1} = external dynamic load (N)
M_t = external torsional moment (Nmm)
a = distance between guide rails (mm)

Conversion of a longitudinal moment acting on a table

$$F_{V2} = \frac{M_L}{b}$$

F_{V2} = external dynamic load (N)
 M_L = external longitudinal moment (Nmm)
 b = distance between runner blocks (mm)

Load-dependent size selection

P _{act.} ≤ P _{max}

Maximum permissible load

Size P_{max} (N) 15 750 1700 20 25 2500

Example:

For $P_{act} = 1500 \text{ N}$, use at least size 20.

Service life

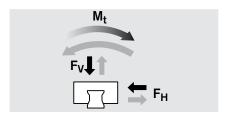
When the condition $P_{act.}\!\leq P_{max}$ is observed, the minimum service life given in the table will apply.

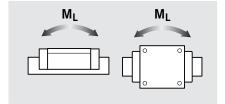
These values were determined at:

 $P = 0.15 \times C$

a runner block

Calculation of bearing load for


Coefficients kt and kL


	N _L	r t	3126
	173	139	15
P _{act.}	121	109	20
F _{V,} F _t	109	97	25
M₊			

Service life Condition 4000 km Use of standard runner block with initial greasing 12500 km Additional use of two lube units with sealing function 25000 km Relubrication of the lube units after 12500 km

Do not exceed the maximum loading of the screw connections!

Take account of the general service life of lubricants!

$$P_{\text{act.}} = k_f \cdot (\left|F_V\right| + \left|F_H\right| + k_t \cdot \left|M_t\right| + k_L \cdot \left|M_L\right|)$$

P _{act.}	=	equivalent load	(N)
$F_{V.}F_{H}$	=	external dynamic loads	(N)
M _t	=	external torsional moment ¹⁾	(Nm)
M_L	=	external longitudinal moment ²⁾	(Nm)
k _t	=	torsional moment coefficient	(m^{-1})
k _l	=	longitudinal moment coefficient	(m^{-1})
k_f	=	operating factor (see table for v	alues)

- 1) The moment Mt will only be fully effective in an application with only one guide rail. For all other cases, see "Information on moment load calculation".
- 2) The moment ML will only be effective when only one runner block is mounted on a guide rail. For all other cases, see "Information on moment load calculation".

Recommended operating factors k_f

k _f	Application		
0.8	Linear motion guide with manual drive		
1.0	Door guides, seat adjustment, slide units for lamps, guidance of		
	protective wire meshes, general laboratory applications, slide units		
	for measuring devices		
1.2	Application in a linear motion axis with ball screw drive		
1.3	Application in a linear motion axis with rack and pinion drive		
1.5	Application in a linear motion axis with toothed belt drive		
2.0	Auxiliary axis of machine tool not subject to dirt		
7.0	Application in a linear motion axis with linear motor drive		
8.0	Application in a linear motion axis with pneumatic drive		
9.0	Application in very dirty environments		
Not for use in	Main axis of a machine tool		
applications	Aggressive wood dust environment		
like	Oscillating conveyors		
	Temperatures $>$ 60°C, $v >$ 2 m/s, $a >$ 30 m/s ²		
	Danger to life and limb (e.g. unsecured overhead installation)		

Technical Data, Design Notes, Mounting Instructions

General Technical Data and Calculations

Definition of dynamic load capacity C

The radial loading of constant magnitude and direction which a linear rolling bearing can theoretically endure for a nominal life of 100 km distance traveled (to ISO 14728 Part 1).

Note on maximum load F_{max}

Because of the weight-optimized design of eLINE Ball Rail Systems, the maximum permissible forces for static and dynamic loads must not be exceeded.

Definition and calculation of the nominal life

The calculated service life which an individual linear rolling bearing, or a group of apparently identical rolling element bearings operating under the same conditions, can attain with a 90% probability, with contemporary, commonly used materials and manufacturing quality under conventional operating conditions (to ISO 14728 Part 1) and optimal installation conditions.

Nominal life at constant speed

Calculate the nominal life L or L_h according to formula (1) or (2):

(1)
$$L = (\frac{C}{F})^3 \cdot 100$$

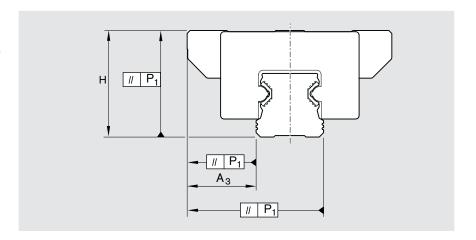
L = nominal life (km)

 $L_h = nominal life$ (h)

C = dynamic load capacity (N)

F = equivalent load (N) s = length of stroke* (m)

(2)
$$L_h = \frac{L}{2 \cdot s \cdot n \cdot 60}$$
 s = length of stroke n = stroke repetition rate (complete cycles/min


(complete cycles/min) (min⁻¹)

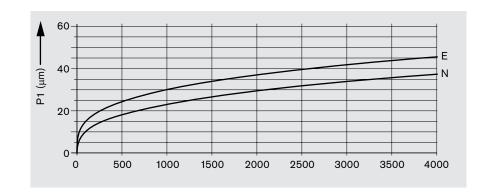
^{*} For a stroke length < 2 x runner block length, the load capacities will be reduced. Please consult us.

Selection of Accuracy Classes

Accuracy classes and their tolerances

eLINE-ball rail systems are offered in two different accuracy classes.

Built-in interchangeability through precision machining


Rexroth manufactures its guide rails and runner blocks with such high precision, especially in the ball track zone, that each individual component element can be replaced by another at any time. For example, different runner blocks can be used without problems on one and the same guide rail of the same size.

Accuracy class	Tolerances dimension H and A ₃ (μm) H A ₃		Max. difference in dimension H and A_3 on one guide rail $\Delta H, \Delta A_3$ (μm)
N	±100	±40	30
E	±120	±70	60
Measured	For any runner b	lock/rail	For different runner blocks
at middle of runner block	combination at an on rail	y position	at same position on rail

Parallelism offset P1 of the ball rail system in service

Measured at middle of runner block

Key to graph $P_1 = \text{parallelism offset}$ L = rail length

Technical Data, Design Notes, Mounting Instructions

Combination of Accuracy Classes

Runner		Rails	
block		N	E
		(μ m)	(μ m)
N	Tolerance dimension H	+/- 100	+/- 110
	Tolerance dimension A3	+/- 40	+/- 60
	Max. diff. in dimens. H and A3 on one rail	30	30
Е	Tolerance dimension H	+/- 115	+/- 120
	Tolerance dimension A3	+/- 50	+/- 70
	Max. diff. in dimens. H and A3 on one rail	60	60

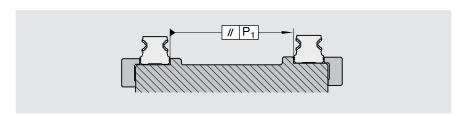
Recommendations for combining accuracy classes

Recommended for short strokes and close spacing of runner blocks: Runner blocks in higher accuracy class than guide rail. Recommended for long strokes and larger runner block spacing: Guide rail in higher accuracy class than runner blocks.

Selection of System Preload

Selection of the preload class In versions without preload there will be a slight clearance between the runner block and the rail. With two rails and use of more than one runner block per rail, this clearance is usually equalized by parallelism tolerances.

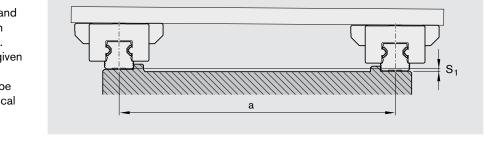
Code	Version	Areas of application	
C0	without preload	For particularly smooth running guide systems with	
		the lowest possible friction and a minimum of external	
		influences, and for mounting bases with low accuracy.	
C1	with preload	For more accurate guide systems with low external loads.	


General Mounting Instructions

Parallelism of the installed rails measured at the guide rails and at the runner blocks

The parallelism offset P1 causes a slight increase in preload on one side of the assembly.

If the tolerances given in the table are not exceeded, the reduction in travel life will as a rule be negligible.

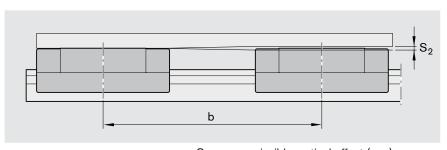

⚠ LINE ball rail systems allow substantially higher installation tolerances compared to steel rail systems.

Size	Parallelism offset P ₁ (mm) for preload class		
	C0 C1		
15	0.027	0.018	
20	0.031	0.021	
25	0.034	0.022	

Vertical offset

If the permissible vertical offset S_1 and S_2 is not exceeded, the reduction in travel life will as a rule be negligible. The tolerance for dimension H, as given the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S_1 .

Permissible vertical offset in the transverse direction S₁


S₁ = permissible vertical offset (mm)a = distance between guide rails (mm)

Y₁ = calculation factor

Calculation factor	for preload class	
	Co	C1
Υ ₁	1.2 · 10 ⁻³	7.5 · 10 ⁻⁴

Permissible vertical offset in the longitudinal direction S₂

The tolerance "max. difference in dimensions H on the same rail", as given the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S_2 .

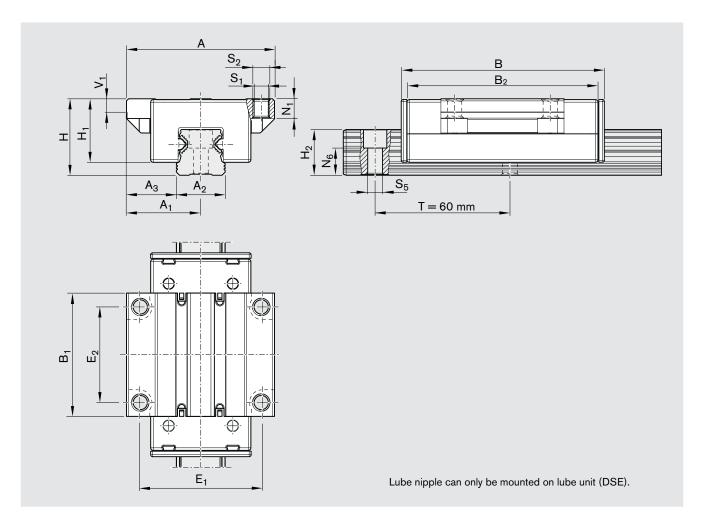
 $S_2 = b \cdot Y_2$

S₂ = permissible vertical offset (mm) b = distance between runner blocks (mm)

Y₂ = calculation factor

Preload classes
C0 = without preload
C1 = with preload

Calculation factor	for preload class	
	Co	C1
Y ₂	6 · 10 ⁻⁴	$2.1 \cdot 10^{-4}$


eLINE Runner Blocks

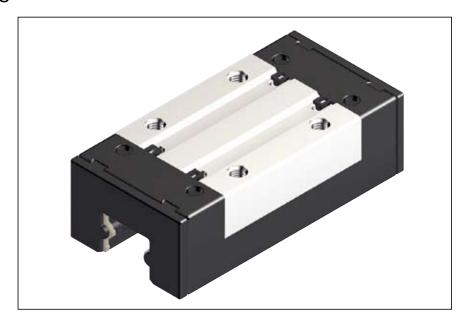
Runner block FNS R2031 Flanged, normal, standard height

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For P_{act.} ≤ P_{max,} no relubrication necessary throughout the stated minimum service life

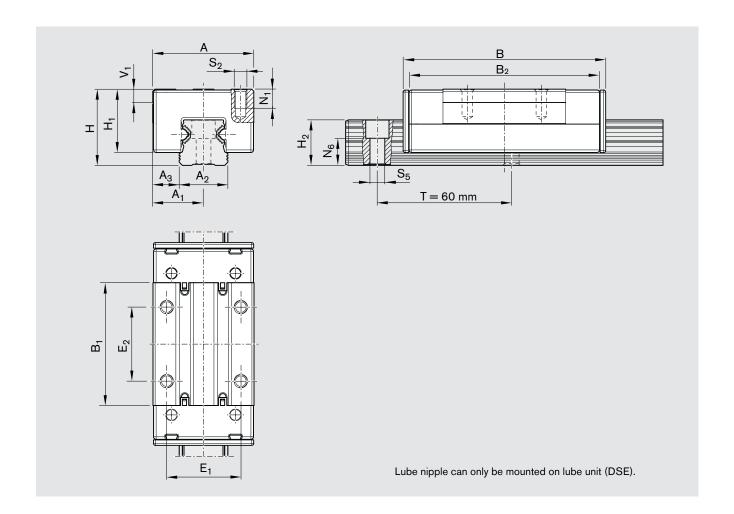
Size	Accuracy class	Part numbers		
		Clearance	Preload	
15	N	R2031 194 10	R2031 114 10	
	E	R2031 195 10	-	
20	N	R2031 894 10	R2031 814 10	
	E	R2031 895 10	-	
25	N	R2031 294 10	R2031 214 10	
	E	R2031 295 10	_	

Size													Weight ¹⁾						
	A	A ₁	A_2	A_3	В	B ₁	B ₂	Н	H ₁	H ₂	V_1	E ₁	E ₂	N_1	$N_6^{\pm0.5}$	S ₁	S ₂	S ₅	(kg)
15	47	23.5	15	16.0	64.0	37.8	59.0	24	19.8	14.3	4.1	38	30	6.0	8.1	4.3	M5	4.4	0.08
20	63	31.5	20	21.5	85.9	51.5	80.3	30	24.7	19.3	5.5	53	40	8.0	11.6	5.3	M6	6.0	0.18
25	70	35.0	23	23.5	96.0	58.0	90.0	36	29.9	21.8	6.4	57	45	9.3	12.9	6.7	M8	7.0	0.26

Load capacities ²⁾ (N)		Moments (Nm)	Moments (Nm)						
	→		Į							
Size	C dyn.	F _{max}	M _t dyn.	M _{tmax} stat.	M _L dyn.	M _{Lmax} stat.				
15	5000	2000	36	14	29	12				
20	11000	4400	101	40	89	35				
25	16000	6400	165	66	147	59				


¹⁾ Please note the low weight of the runner block.

²⁾ Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.


eLINE Runner Blocks

Runner block SNS R2032 Slimline, normal, standard height

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For P_{act.} ≤ P_{max,} no relubrication necessary throughout the stated minimum service life

Size	Accuracy	Part numbers	
	class	Clearance	Preload
15	N	R2032 194 10	R2032 114 10
	E	R2032 195 10	-
20	N	R2032 894 10	R2032 814 10
	E	R2032 895 10	-
25	N	R2032 294 10	R2032 214 10
	E	R2032 295 10	_

Size	Dime													Weight ¹⁾				
	Α	A ₁	A_2	A ₃	В	B ₁	B ₂	н	H ₁	H ₂	V_1	E ₁	E ₂	N ₁	N ₆ ^{±0.5}	S ₂	S ₅	(kg)
15	34	17	15	9.5	64.0	37.8	59.0	24	19.8	14.3	4.1	26	26	6.0	8.1	M4	4.4	0.07
20	44	22	20	12.0	85.9	51.5	80.3	30	24.7	19.3	5.5	32	36	7.5	11.6	M5	6.0	0.15
25	48	24	23	12.5	96.0	58.0	90.0	36	29.9	21.8	6.4	35	35	9.0	12.9	M6	7.0	0.22

Load capacities ²⁾ (N)		Moments (Nm)	Moments (Nm)						
	→		Į							
Size	C dyn.	F _{max}	M _t dyn.	M _{tmax} stat.	M _L dyn.	M _{Lmax} stat.				
15	5000	2000	36	14	29	12				
20	11000	4400	101	40	89	35				
25	16000	6400	165	66	147	59				

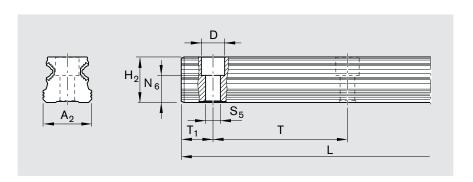
¹⁾ Please note the low weight of the runner block.

²⁾ Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Guide Rails

Guide rails for mounting from above R2035

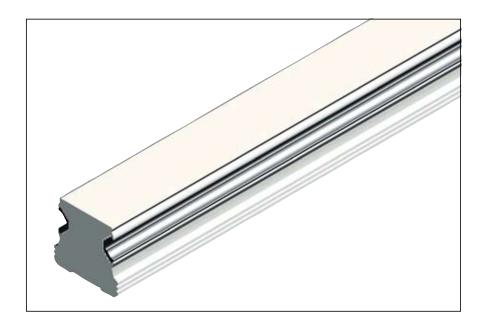
with plastic mounting hole plugs (supplied)


- Rail body made from wrought aluminum alloy, anodized
- Ball running tracks made from hardened antifriction bearing steel

Part numbers and rail lengths

Size	Accuracy	Part number		Recomme	ended rail l	ength, one	-piece			
	class	One-piece	Composite	Spacing	Number o	f holes n _B	/ Rail leng	th L (mm)		
			Number of sections,	T (mm)						
		Rail length L (mm)	Rail length L (mm)							
15	N	R2035 104 31	R2035 104 3		2/80	2/90	2/100	2/116	3/176	4/236
	E	R2035 105 31			5/296	6/356	7/416	8/476	9/536	10/596
20	N	R2035 804 31	R2035 804 3		11/656	12/716	13/776	14/836	15/896	16/956
	E	R2035 805 31]	17/1016	18/1076	19/1136	20/1196	21/1256	22/1316
25	N	R2035 204 31	R2035 204 3		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676
	E	R2035 205 31			29/1736	30/1796	31/1856	32/1916	33/1976	34/2036
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836
					65/3896	66/3956	67/4016			

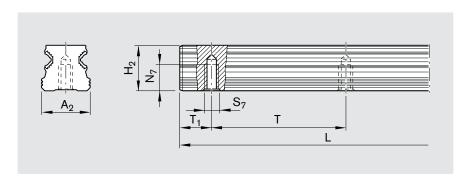
Dimensions and weights


Size	Dimer	mensions (mm)												
	A ₂	H ₂	N ₆ ^{±0.5}	D	S ₅	T _{1S} ^{±0.5}	T _{1min}	Т	L _{max} 1)	(kg/m)				
15	15	14.3	8.1	7.4	4.4	28.0	10	60	4016	0.57				
20	20	19.3	11.6	9.4	6.0	28.0	10	60	4016	0.98				
25	23	21.8	12.9	11.0	7.0	28.0	10	60	4016	1.25				

- 1) One-piece guide rails
- 2) Please note the low weight per meter of the guide rail.

eLINE Guide Rails

Guide rails for mounting from below R2037


- Rail body made from wrought aluminum alloy, anodized
- Ball running tracks made from hardened antifriction bearing steel
- Especially suitable for mounting on e.g. metal plates, plastics, or wood with through-holes

Part numbers and rail lengths

Size	Accuracy Part number		Recommen	ded rail le	ngth, one-	oiece		Recommended rail length, one-piece									
	class	One-piece	Composite	Spacing	Number of	of holes n _B	/ Rail leng	th L (mm)									
			Number of sections,	T (mm)													
		Rail length L (mm)	Rail length L (mm)														
15	N	R2037 104 31	R2037 104 3		2/80	2/90	2/100	2/116	3/176	4/236							
	Е	R2037 105 31			5/296	6/356	7/416	8/476	9/536	10/596							
20	N	R2037 804 31	R2037 804 3		11/656	12/716	13/776	14/836	15/896	16/956							
	Е	R2037 805 31			17/1016	18/1076	19/1136	20/1196	21/1256	22/1316							
25	N	R2037 204 31	R2037 204 3		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676							
	Е	R2037 205 31			29/1736	30/1796	31/1856	32/1916	33/1976	34/2036							
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396							
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756							
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116							
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476							
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836							
					65/3896	66/3956	67/4016										

Dimensions and weights

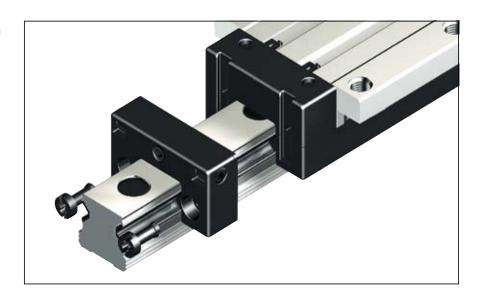
Size	Dimensi	ons (mm	1)						Weight ²⁾
	A ₂	H ₂	N ₇	S ₇	T _{1S} ^{±0.5}	T _{1min}	Т	L _{max} 1)	(kg/m)
15	15	14.3	7.5	M5	28.0	10	60	4016	0.57
20	20	19.3	9.0	M6	28.0	10	60	4016	0.98
25	23	21.8	12.0	M6	28.0	10	60	4016	1.25

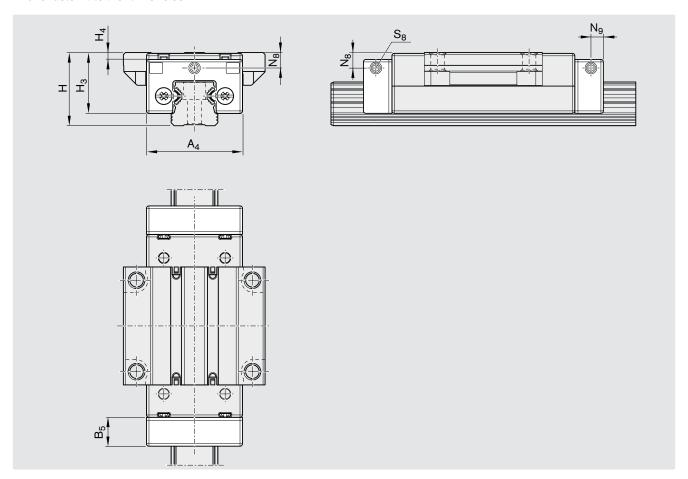
- 1) One-piece guide rails
- 2) Please note the low weight per meter of the guide rail.

Accessories

Lube unit with sealing function DSE

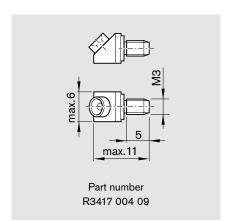
- Material: special plastic
- Acts as an end seal
- Relubricatable

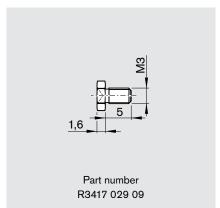

Mounting instructions:


Before mounting the DSE, remove the seal unit by pulling it upward.

The required fastening elements are supplied along with the unit.

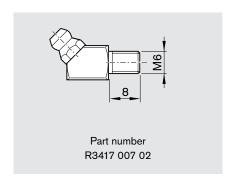
Please order the lube nipple separately. Lube units are prefilled with ISO VG 1000 oil and therefore ready for mounting.

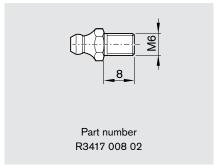

• Push the lube unit onto the guide rail and fasten it to the runner block.



Size	Part number	Dimension	Dimensions (mm)								
		A ₄	B_5	H	H ₃	H ₄	N ₈	N ₉	S ₈	(cm³)	
15	R2030 125 00	31.7	11.5	24	19.4	0.4	4.5	5.0	МЗ	0.65	
20	R2030 825 00	43.2	13.0	30	24.3	0.4	5.0	5.0	M6	1.35	
25	R2030 226 00	47.2	14.0	36	30.0	3.4	7.6	6.1	M6	1.7	

Funnel-type lube nipple for size 15





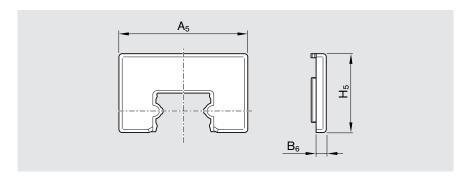
Hydraulic-type lube nipple for size 20 and 25

Mounting instructions:

The lube nipples can only be mounted on the lube unit DSE.

Accessories


Seal unit DE


Material: POM

Mounting instructions:

The seal unit cannot be mounted when the runner block is on the guide rail.

- Slide the seal unit (1) from above into the grooves on the end face of the runner block.
- Mount the runner block, pushing it off the mounting arbor (2) and onto the guide rail. The seal unit will align itself vertically relative to the guide rail.

Size	Part numbers	Dimension	ns (mm)	Quantity per pack	
		A ₅	B ₆	H ₅	
15	R2030 110 00	31.7	2.5	19.4	
20	R2030 810 00	43.2	2.8	24.3	20
25	R2030 211 00	47.2	3.0	26.5	

Bosch Rexroth AG Linear Motion and Assembly Technologies Ernst-Sachs-Straße 100 97424 Schweinfurt. Germany Telephone +49 97 21 9 37-0

Telefax +49 97 21 9 37-2 75 (general)
Telefax +49 97 21 9 37-2 50 (direct)
Internet www.boschrexroth.com/brl
E-Mail info.brl@boschrexroth.de

Subject to technical modifications.

© Bosch Rexroth AG 2006

Printed in Germany - p 2006/04/5/M

eLINE Ball Rail Systems R310EN 2211 (2006.04)